本文共 1173 字,大约阅读时间需要 3 分钟。
这幅图是通过开源的工具draw_convnet()生成的。在清楚整个前向计算网络中的每一个层的输入输出以及参数设置后可以自己手动画出计算图出来,对于参数量计算就很直观了。
输入:N0*C0*H0*W0 输出:N1*C1*H1*W1 输出的feature map大小: H1=(H0+2×pad−kernel_size) / stride+1 W1=(W0+2×pad−kernel_size) / stride+1 当输入的H0 == W0时,公式可以简化为:H1=W1=(h + 2xpad - kernel_size) / stride + 1注:当stride为1时,若pad=(kernel_size−1) / 2,那么经过计算后的feature map大小不变
下面是一个多通道图像的输入LeNet-5网络前向计算模拟图:
整个网络占据权重的为Convolution/Innerproduct 两层,分别计算参数量为,:
C1: 5 x 5 x 20 = 500,5x5卷积核, 20个feature map输出,20个kernelC2: 20x 5 x 5 x 50 = 25000 ,20维度输入,则20x5x5 kernel,50个feature map输出,即相当于20通道的图像输入,则需要20x5x5的kernel来卷积乘,50个这样的卷积核操作得到50个feature map,50个kernelF1: 50x4x4x500 = 400000,50维度特征图输入,全连接,每个点做卷积乘,则kernel大小为50x4x4,共500个feature map输出,500个kernelF2 : 500x1x1x10 = 5000,500维度特征图输入,全连接,kernel大小为500x1x1,共10个feature map输出,10个kernel
用4bytes的float类型来存储参数,则总的参数量大小为:
500 + 25000 + 400000 + 5000 + (20 + 50 + 500 + 10) = 431080
字节数为:
431080 x 4 = 1724320 ≈ 1683.90625kb ≈ 1.64M
参考资料: